Bayesian Parametric Bootstrap for Models with Intractable Likelihoods
نویسندگان
چکیده
منابع مشابه
Bayesian experimental design for models with intractable likelihoods.
In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utili...
متن کاملParameter Estimation for Hidden Markov Models with Intractable Likelihoods
Approximate Bayesian computation (ABC) is a popular technique for approximating likelihoods and is often used in parameter estimation when the likelihood functions are analytically intractable. Although the use of ABC is widespread in many fields, there has been little investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the as...
متن کاملOn Russian Roulette Estimates for Bayesian inference with Doubly-Intractable Likelihoods
A large number of statistical models are ‘doubly-intractable’: the likelihood normalising term, which is a function of the model parameters, is intractable, as well as the marginal likelihood (model evidence). This means that standard inference techniques to sample from the posterior, such as Markov chain Monte Carlo (MCMC), cannot be used. Examples include, but are not confined to, massive Gau...
متن کاملBayesian inference and the parametric bootstrap.
The parametric bootstrap can be used for the efficient computation of Bayes posterior distributions. Importance sampling formulas take on an easy form relating to the deviance in exponential families, and are particularly simple starting from Jeffreys invariant prior. Because of the i.i.d. nature of bootstrap sampling, familiar formulas describe the computational accuracy of the Bayes estimates...
متن کاملPlaying Russian Roulette with Intractable Likelihoods
A general scheme to exploit Exact-Approximate MCMC methodology for intractable likelihoods is suggested. By representing the intractable likelihood as an infinite Maclaurin or Geometric series expansion, unbiased estimates of the likelihood can be obtained by finite time stochastic truncations of the series via Russian Roulette sampling. Whilst the estimates of the intractable likelihood are un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bayesian Analysis
سال: 2019
ISSN: 1936-0975
DOI: 10.1214/17-ba1071